Deep Learning Approaches in Education: A Literature Review on Their Role in Addressing Future Challenge
Main Article Content
Abstract
This study aims to examine the role and potential of Deep Learning (DL) approaches in the field of education through a literature review method. DL, as a branch of artificial intelligence, is increasingly applied across various educational domains, including personalized learning, educational data analysis, and the development of intelligent teaching systems. This review analyzes more than 20 scholarly articles published in the past decade to identify DL’s contributions to the effectiveness and efficiency of the learning process. The findings indicate that DL enhances the accuracy of student performance predictions, supports adaptive learning, and strengthens natural language processing in educational contexts. However, challenges such as limited infrastructure, low technological literacy among educators, and ethical issues like data privacy remain major obstacles. The study concludes that DL approaches hold a strategic role in addressing future educational challenges, though their success largely depends on the wise and collaborative integration of technology.
Article Details

This work is licensed under a Creative Commons Attribution 4.0 International License.
References
Akbar. (2023). Model & metode pembelajaran inovatif: Teori dan panduan praktis. In PT. Sonpedia Publishing Indonesia.
Andriyani. (2024). Data Sebagai Fondasi Kecerdasan Buatan. In TOHAR MEDIA.
Aouifi, E. (2024). A hybrid approach for early-identification of at-risk dropout students using LSTM-DNN networks. In Education and Information Technologies (Vol. 29, Issue 1, pp. 37–48).
Bhatt. (2021). The state of the art of deep learning models in medical science and their challenges. In Multimedia Systems (Vol. 27, p. 6).
Cam, H. N. T., Sarlan, A., & Arshad, N. I. (2024). A hybrid model integrating recurrent neural networks and the semi-supervised support vector machine for identification of early student dropout risk. PeerJ Computer Science, 10.
Devlin, J., Chang, M. W., Lee, K., & Toutanova, K. (2019). Bert: Pre-training of deep bidirectional transformers for language understanding. In In Proceedings of the 2019 conference of the North American chapter of the association for computational linguistics: human language technologies, volume 1 (long and short papers).
Doleck. (2020). Predictive analytics in education: a comparison of deep learning frameworks. Education and Information Technologies, 25, 2020.
Dunn, A. M., Hofmann, O. S., Waters, B., & Witchel, E. (2022). Deep Learning dan Penerapannya dalam Pembelajaran. In Proceedings of the 20th USENIX Security Symposium (pp. 395–410).
Jubaedah, S. (2024). Pemanfaatan Deep Learning Untuk Mendeteksi Dan Menganalisis Gaya Belajar Siswa. COSMOS: Jurnal Ilmu Pendidikan, Ekonomi Dan Teknologi, 1(6), 635–646.
Latif, E. Y., Idrus, R., & Perdana, C. A. (2025). Peningkatan Kemampuan Literasi dan Numerasi Siswa melalui Pendahuluan Inovasi dalam metode pembelajaran diharapkan dapat mengembangkan. CJPE : Cokroaminoto Juornal of Primary Education, 8(1), 73–84.
Luckin, R., Holmes, W., Griffiths, M., & Forcier, L. B. (2022). Artificial Intelligence and the Future of Learning: Expert Panel Report. In UNESCO.
Mahendra. (2024). Tren Teknologi AI: Pengantar, Teori, dan Contoh Penerapan Artificial Intelligence di Berbagai Bidang. In PT. Sonpedia Publishing Indonesia.
Menghani. (2023). Efficient deep learning: A survey on making deep learning models smaller, faster, and better. In ACM Computing Surveys (Vol. 55, Issue 12, pp. 104–116).
Nabila, S. M., & Septiani, M. (2025). Pendekatan Deep Learning untuk Pembelajaran IPA yang Bermakna di Sekolah Dasar. Primera Educatia Mandalika: Elementary Education Journal, 2(1), 9–20.
Nelvia, S. (2019). IMPLEMENTASI PENDEKATAN DEEP LEARNING TERHADAP PEMBELAJARAN MATEMATIKA DI SEKOLAH DASAR. Pendas : Jurnal Ilmiah Pendidikan Dasar, 17(1), 87–98.
Praseno, I. R. (2024). LEARNING ANALYTICS UNTUK MENINGKATKAN KUALITAS PENDIDIKAN DI INDONESIA: SEBUAH KAJIAN PUSTAKA. PROSIDING SEMINAR NASIONAL SANATA DHARMA BERBAGI, 2.
Ramadan. (2025). PENDEKATAN PEMBELAJARAN DEEP LEARNING DI SEKOLAH DASAR (TEORI DAN APLIKASI) . In Greenbook Publisher.
Ridwan, M. (2021). The Importance Of Application Of Literature Review In Scientific Research. Jurnal Masohi, 2(1).
Sistematis, L. (2025). INTEGRASI DEEP LEARNING DALAM PENDIDIKAN ISLAM ADAPTIF: SEBUAH STUDI LITERATUR SISTEMATIS. An-Nahdlah: Jurnal Pendidikan Islam, 4(1), 817–826.
Turmuzi, A. (2025). Pendekatan Deep Learning untuk Menciptakan Pengalaman Belajar yang Bermakna Ahmad Turmuzi. Journal Scientific of Mandalika (Jsm), 6(7), 1711–1719.
Vaswani. (2017). Attention is all you need. In Advances in neural information processing systems.
Vygotsky, L. S. (1978). Mind in society: The development of higher psychological processes. Massachusetts: Harvard University Press.
Wedasuwari, I. A. M. (2024). Workshop Penguatan Asesmen Berorientasi Keterampilan Abad Ke-21. JASINTEK, 6(1), 134–140.
Xiong. (2019). Predicting learning status in MOOCs using LSTM. In In Proceedings of the ACM Turing Celebration Conference-China.
Yogaswara, R. (2019). Artificial Intelligence Sebagai Penggerak Industri 4.0 dan Tantangannya Bagi Sektor Pemerintah dan Swasta. Masyarakat Telematika Dan Informasi : Jurnal Penelitian Teknologi Informasi Dan Komunikasi, 10(1), 68.